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QUASISTATIONARY RELAXATION AND GAS-DYNAMIC PHENOMENA IN A ONE-COMPONENT 

SYSTEM OF EXCITED ANHARMONIC OSCILLATORS 

V. P. Silakov and A. V. Chebotarev UDC 531 

At the present time the kinetic theory of vibrational relaxation of molecular gases is 
the most developed branch of physical kinetics. Among important achievements in this field 
one has to include the development of general methods of description of systems far from 
equilibrium [i, 2]. In such cases the anharmonicity of the molecular vibration shows a sub- 
stantial influence on the behavior of the medium. Until now theoretical analysis of vibra- 
tional relaxation of systems of anharmonic oscillators was carried out basically for gases 
at rest. 

In addition, due to advances in the physics of nonequilibrium discharge phenomena it 
became clear that the correct description of the behavior of strongly excited gases should 
take into account their relaxational motion. Indeed, as an example, such motion can markedly 
influence the conditions of vibrational relaxation of gases after the discharge [3], and in 
fast-flow discharge arrangements it can lead to the breakdown of the pumping regime of the 
vibrational degrees of freedom of the gaseous mixtures [4]. For a theoretical consideration 
of a selected class of problems one has to complete a substantial amount of computational 
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tasks, related to solving a large number of equations of vibrational kinetics. In order 
to lower the level of difficulty it is necessary to choose a simple and sufficiently reliable 
model of the process. 

The most economical model describing the vibrational relaxation of molecular gases in a 
widerange of measurement of their parameters is the quasistationary model of vibrational 
relaxation of anharmonic oscillators, proposed in [5] (a subsequent account of the foundations 
of the method is given in [i]). An important merit of the model is the fact that starting 
with relatively simple equations for macroscopic quantities it permits one to obtain suffi- 
ciently detailed information about the state of the gas during the whole process of relaxa- 
tion. However, in [6], where one studies heating of vibrationally excited nitrogen, it is 
stated that the results of the calculations performed within the framework of the quasista- 
tionary model should differ sharply from the corresponding results of the nonstationary 
kinetic theory. The possibility of such a discrepancy in case of states of the gas far from 
equilibrium is related in [6] to the large contribution to the heating of the nonresonant 
V-V transfer processes between the anharmonic oscillators in the initial stage of relaxa- 
tion when the distribution function of the molecules on the vibrational levels is formed. 
Our preliminary results showed a certain inaccuracy of this statement. Moreover, in [7], 
the application of the quasistationary theory and the recent data on the frequencies of the 
V-V and V-T transfer processes (see [8]) assured a satisfactory description of the behavior 
of nitrogen off the vibrational equilibrium after discharge. Therefore it is necessary to 
directly compare the quasistationary and the nonstationary kinetic models of relaxation of 
the system of excited anharmonic oscillators. 

In the following we consider the possibility of application of the quasistationary 
model of vibrational relaxation to the description of the dynamic relaxation of nonequilibrium 
gases of diatomic molecules. An analysis and correction of the analytical relations of the 
macroscopic form of this model are given. A comparison of results obtained within the frame- 
work of the quasistationary and nonstationary kinetic models is carried out. To demonstrate 
the applicability of the quasistationary model to the calculations of dynamics of the motion 
of nonequilibrium gases the problem of amplification of weakshock wave in vibrationally ex- 
cited nitrogen is considered. 

Further, the correctness of the description of the relaxation processes is controlled 
by calculations performed within the sufficiently accurate nonstationary level kinetics 
model (NLKM). In the case of the isochoric or isobaric relaxation of a one-component system 
the equations of NLKM, taking into account the most important single-quantum transitions, 
have the form [i, 6]: 

d/d~ =ni+:--~, i = O,i . . . . .  G. ( ! )  

Here fi = Ni/N; Ni is the number of molecules per unit volume on the i-th vibrational level; [ ' "  
N is the total number of molecules per unit volume; n~+: =Z P~+l,d~+:--P~j+z/i + ~ (~k,~+1; k Y i + 1 , i l i + 1 1 h  - -  )] Qu+I/ifh+l Z is the frequency of collisions of a molecule; Pi,i+l and Pi+1,i are the transi- 

tion probabilities of a molecule for the transitions (i + i + I) and (i + 1 § i) in colli- 

A k , h +  l ~ h +  l , k  sion with another molecule; wi+1.~ and are the probabilities of the V-V transfer ~i,i+l 

( k-+k  + l~ [k + t---~k~ 
i+ l - -~ i  ] and [i---~i+i ] i n  c o l l i s i o n  of  two m o l e c u l e s ;  i ,  i s  t he  number of  the  l a s t  v i b r a -  

t i o n a l  l e v e l  c o n s i d e r e d  ( d e t e r m i n e d  from the  c o n d i t i o n  of  d e l i b e r a t e  n e g l e c t  of  t he  e x c i t a -  
t i o n s  wi th  i > i , ) .  

I f  t he  c o n t r i b u t i o n  o f  t he  n o n r e s o n a n t  V-V p r o c e s s e s  to  t he  r e l a x a t i o n  i s  i n s i g n i f i c a n t  
then  in  t he  q u a s i s t a t i o n a r y  app rox ima t ion  t he  s o l u t i o n  o f  Eq. (1)  i s  g iven  by t he  dependence 
[ 1 ] 

E 

�9 i>n l ,  
r 

where Io exp [-- 
I~2)=C {i--B [exp 

(2)  

E,--(~--I)~- is the lower branch of the Treanor distribution [9]; 

El ~__ 
(iSVT)--exp (noSvm)]/C}/(i q- I); n0=2AET I + 0.5 is the vibrational quantum 
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F er 
number corresponding to the minimum of the Treanor distribution; n I = n o + 8~ In|i + (n o + I) ~-• 

exP(--n08VT--0.5)]; ffT=/oeXp(--n~)is the value of the Treanor distribution function for 
L 

PIo kTS~ v 
= Q10=Q10; El is the ex- i = no; f0 is a norming factor; B ~12AE6vT; C = exp(--O.5)(n o -Jr- I)FT; __ 01 

citation energy of the first vibrational level; AE is the anharmonic constant; 6VT and 6VV 
are parameters determining the frequencies of V-T and V-V processes; T I is the vibrational 
temperature of the first vibrational level; T is the gas temperature. 

The average number of vibrational quanta, incident on one molecule, and the velocity of 
change of this number are found from the relations 

i S (n = ~. EJ~; (3)  

Here index f means that the quantities are computed using the explicit distribution function; 
~80 is the energy of the vibrational quantum; Ei is the excitation energy of the i-th vibra- 
tional level of the oscillator; Hi = Z(Pi,i-~fl--Pi-1,~]i-1) is the flux of molecules from the 
i-th level to the (i - l)-th one due to the V-T processes. The distribution function (2) 
and the relations (3), (4) are the basis of the quasistationary model of relaxation (QMR). 

An approximate summation in (3) and (4) with the function (2) yields the result (see 
[i], Chap. 4, Sec. 5): 

S(/)~. Sm and k dt ~(1) ~" (~' 

where 
Sm= Sml + ~2; 

Sml = [exp (k~1) -- I]-I; 

S~2 = exp (--0,5)(n0 + i)(nl -- n0)FT; 

\dr ]ml \-~/m2" 
= - %P1o { ~ -  ~P  ( -  EI#~O] [~p ( -  EI/kT1) --  ~P  ( -  F i " k r ) ]  " 

[1 - exp ( -  E1/kr~+ 8 v r ) ]  2 

~ [(n o + 1) FT] 2 . 

(5) 

(5a) 

(5b) 

(6) 

(6a) 

(6b) 

Index m means that the considered quantity belongs to a set of quantities determining the 
macroscopic form of the quasistationary model of relaxation (MQMR). The first pieces in the 
above expression show the contribution to the sum (3) and (4) of the terms related to levels 
with quantum numbers from the interval0~<n0, and the second pieces show the contribu- 
tion of the terms described by the quantum numbers no<<.~<<.nl. 

In this work we will illustrate the possibility of application of the macroscopic form 
of QMR to the description of vibrational relaxation on the example of the molecular gas N 2. 
The numerical comparison of the formulas of QMR with the corresponding approximate expres- 
sions MQMR shows that they give different results for the same cases. In Fig. 1 (i: T = 
300, 2: 500, 3: 900~ we show the dependence of the ratio (dS/dt)m(dS/dt)k (f) (dashed 
lines) on the average number of vibrational quanta S [the index k shows that the calculation 
of the considered quantity is carried out by using function (2)]. In finding (dS/dt) m the 
vibrational temperaturel was found from the equation Sm(T, T I) = S, and in finding (dS/dt)~ f) 

from the equation s~f)(T, T I) = S. It is seen in Fig. 1 that the ratio under consideration 
is practially equal to unity only in the region of small departure from equilibrium of the 
gas. In the regions of moderate and large departure from equilibrium the dependences have a 
nonmonotonic character and markedly differ from unity. As we will see later the lack of 
monotony in the region of moderate departure from equilibrium is due to the incorrect re- 
placement of the Treanor branch of the distribution function by the Boltzmann distribution 
in derivation of the formulas (5a) and (6a) and the overestimated result in the region of 
large departure from equilibrium is due to the loss of the factor in (6b). 
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In deriving the more accurate expressions of QMR one has to take into account the fol- 
lowing relations 

(d~ ~(') (dS ~(/) (dS ~(n 
-~T/k --=~T)k~ + ~-Zf]~2; (7) 

riD--1 
dE ~ (I) ( P i , i - l t  i - -  ( 7 a ) 
~T/kl - -  ~ i - - 1 , i ] ~ - - 1 2 )  

t=1 
n 1 

dS __ P L i - l l i  �9 W) Z E "(') ( 7b )  -g/-) k= ,~" 

In the case n o >> i the formula (7b) becomes 

ZQ1 o ~ + i )  F,]  ~ - -  ZPlo  (n o + 1) F,  (dS / (m) 
- ~  k2 e Xp (26VT)-  t kr~rV  [(n0 eXp (6VT) 7L l - -  ~--------'k'-~], " ( 8 )  

E q u a t i n g  (8 )  and ( 6 b )  f o r  l a r g e  d e p a r t u r e  f rom e q u i l i b r i u m  s t a t e  o f  t h e  g a s  ( i . e . ,  u n d e r  
( dS ~ / ( dS / (m)  

conditions where the second term in (8) can be neglected) we see that \-~/m~\-~l ~ 

exp (2~vr) -- 1 

26VT 

is close to 2. 

For nitrogen at low temperatures (comparable with room temperature) this ratio 

We will analyze the possible effect of the replacement of the Treanor branch of the 
distribution function by the Boltzmann distribution function, as done in deriving (5a). If 

we t a k e  i n t o  a c c o u n t  t h e  r e l a t i o n  F T Nexp  - - \ 2 k r l ]  ~ , t h e n  a c c o r d i n g  t o  ( 8 ) ,  t h e  v e l o c i t y  

o f  change  o f  t h e  v i b r a t i o n a l  e n e r g y  o f  t h e  s y s t e m  s h o u l d  s t r o n g l y  depend  on T~. At a f i x e d  
g a s  t e m p e r a t u r e  t h e  d e p e n d e n c e  o f  t h e  v i b r a t i o n a l  t e m p e r a t u r e  on t h e  v a r i a b l e  S i s  d e t e r m i n e d  
f rom t h e  e q u a t i o n  

&(r ,  f~) + &(r~ TD = S. (9) 

I n  t h i s  manner  we can  s e e  t h a t  e v e n  a s m a l l  i n a c c u r a c y  in  t h e  f o r m  o f  Eq. (9 )  can  l e a d  t o  a 
v i s i b l e  e r r o r  i n  t h e  d e t e r m i n a t i o n  o f  ( d S / d t )  m. I n  F i g .  2 f o r  v a r i o u s  gas  t e m p e r a t u r e s  ( v a l -  
u e s  a r e  t h e  same as  i n  F i g .  l )  a r e  g i v e n  t h e  d e p e n d e n c e s  o f  t h e  d i f f e r e n c e  T l k  - T~m ( d a s h e d  
l i n e s )  on S, where  T~k and Tim a r e  t h e  v a l u e s  o f  T 1 found  by means o f  QMR and NQNR, r e s p e c -  
t i v e i y .  The p l o t  shows t h a t  t h e  e r r o r  i n  f i n d i n g  t h e  v i b r a t i o n a l  t e m p e r a t u r e  o f  t h e  f i r s t  
l e v e l  i s  t h e  l a r g e s t  i n  t h e  r a n g e  o f  S c o r r e s p o n d i n g  t o  t h e  c a s e s  o f  m o d e r a t e  d e p a r t u r e  o f  

, ). More-  the state of the system from equilibrium (i.e., when Sml ~ Sm2 but dTm2 ~ ml 

_ /dS ~ I / d S  ~(r) 
over, the peaks of the dependences depicted in Fig. 1 f o r ( ~ T ] m ] ( ~ T ~  fall precisely in the 

region of the largest errors in T I. In conditions of a large departure from equilibrium 
this effect is less apparent. From what has been said it follows that using the expressions 
for Sml can bring about a substantial inaccuracy in the description of the process of vibra- 
tional relaxation. 
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The replacement of the Treanor branch of the distribution function by the Boltzmann dis- 
tribution made in the derivation of the analytic expression (6a) largely underestimates the 

values of (dS/dt)~) . I :  It is illustrated in Fig. 3, where for various gas temperatures (values 

(~ I I( ~s ~'" are same as in Fig. i) the dependence of the ratio \~&x/\~T/k x on T l i s  depicted by dashed 

lines. It is seen that in determining the velocity of vibrational relaxation of a system 

only slightly off equilibrium [whenl(d-~S,)l<l(d-~S,)I] it is necessary to take into account the 
I k a ~ l  m~ I I \ U ~  / ~ l  I 

Treanor character of the population of the lower vibrational levels. 

A more correct description in the framework of MQMR can be achieved by way of approxi- 
mating the function fi on the segment 2~i~n0--1. The character of the approximation is 
easy to understand by considering the explicit form of the expressions for s~f) and (dS/ 

s ~  ~ h D  (a, q), 

dS\(,) exp(--Svr) {t --exp [---f-.(T~ T)]} ]oD(a--Svr, q), -~}k  ~ - -  ZP~o ~ - 

where n o - 1  
_ E~. AE D ( a , q ) =  ~ iexp(i~q) e x p [ - - i ( a + q ) ] ;  a - - ~ ,  q = ~ .  

{=1 

In writing the last equation the relation of the detailed balance was used Pi_1,i=Pi,i-lexp x 
[ ' a  + 2q(i - -  t)]. 

In order to compute the sum D we suggest replacing the function r = exp (i2q) by 
the function 

/exp (I]/--a), 2<~i<~io, (10)  
~o(i) = [ e x p ( •  i o < i ~ < n  o - l .  

Here10= (y -- ~)l(~ -- 6); ~ = 2(2q- At)q; ~ = (4+ At)q; y = (n0--1)(no-- h 2-1)q; ~ = [2(n0--1)-- 
A2] q. The points of intersection of the functions r and (p(i) correspond to the following 
values of the variable i: ~(~) = 2, i(~) = 2-~ A I and i(3 ) = n 0- A s- I, i(4 ) = n 0- I. In result we 
obtain 

e_,rl 
D (,,. q) = , - o  ~ + 0 - e-")  ~ [ ~  ( 2 - -  e -"  - -  ~-"'o) - -  

e-~ . ( 1 1 )  
- (~ + ~o)(i - ~ - , )  e-~'o] + 0 - - -7-")  ~ [ '~ (1 - ~-~'} ( e - "  - ~-{"o-'o}") + .  

--F e - "  ( ' [  - -  e - ( n o - i o ) " )  - -  (n o - -  io} (1 - -  e - " ) e - C % - i o ) " ] }  ~ D(m)(a,  q), 

where ~---- (1 +Aa)q; P = a - - ( 3  +A1)q; F = a --  (2% -- As -- 3)q; ~ =  ( i 0 - - 1 ) a - -  [i0(2n0 -- As -- 3) --  
( n o -  t ) ( n 0 -  As i ) ] q .  In de t e rmin ing  the  norming f a c t o r  fo i t  i s  s u f f i c i e n t  on t he  i n t e r v a l  
2 4  $<~ n , -  i t o  use  i n s t e a d  o f  t he  f u n c t i o n  r  an approx imat ion  of  the  form e x p ( S i  - a )  

�9 t he  d i s t r i b u t i o n  C / ( i  + 1) .  and on t h e  i n t e r v a l  n 0 ~  ~ <-~ nl to  r e p l a c e  t he  d i s t r i b u t i o n  f~2)  by 
In t h i s  case  

_ e - o  ~{om) / e , ~  " 1_ 

~-~ G - ~  - ~-"~ + 0 - e-") ~ + o- +(.o + ~)~- 1. ~ 

and (~ = qn~ + 0.5). We note that the application of the relation (ii) and (12) assures 
such a selection of the parameters of approximation al and A 2, which in wide ranges of varia- 
tion of T I and T for a given gas allows one to attain the best agreement of the results for 
S I and (dS/dt) I according to the formulas 

imP=/pb(m~a, q); ( 1 3 )  

< - - . o  ox, [_ , , , ,  
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with the analogous results of calculations performed by means of QMR. 
n I 

"~'~ Ei/~ ~)" one can obtain an approximate expression 9(l) 
For the parameter ~k2--~0 

~ = n  0 

(I) ..~ exp ( - -  0.5) (n o + 1) FT {n~ - -  n o + k2 N " , - " ~  ' }--s?! 
e x p  [ s v r  ("~ - "o)1 - i ~ P  ( ~ v r )  - t ( 1 5 )  

In case of nitrogen the numerical comparison of the characteristic quantities for the 
parameters A I and A2 gives the values: A l = 1.514 + 2.79"I0-3T, A 2 = i. In Figs. 1-3 (solid 
lines) one can see a pronounced improvement of accuracy of the description of vibrational 
relaxation in the framework of the macroscopic form of QMR in passage from the formulas (5a), 
(5b), (6a), (6b) to the formulas (8), (11)-(15). Below by MQMR we understand the model based 
on application of the indicated more accurate relationships. 

We apply MQMR to the calculation of the isobaric relaxation of vibrationally excited 
nitrogen and compare our results with analogous results obtained by means of NLKM. In solving 

the problem by the methods of NLKM Eq. (i) are supplemented by the relation ~Ei/~ = ~0Sand 
the equation of energy balance 

3,5kT + ~ % S  = 3,5kT o + ~ % S  o ( 1 6 )  

where S o and T O are the initial values of the parameters S and T. The described system of 
equations was integrated numerically (for i, = 50) with the aid of the algorithm of solution 
of stable systems of ordinary differential equations given in [i0]. The investigation of 

vibrational relaxation within the MQMR approach was carried out on the basis of the equations 

dSd_T = k/dS l(m)+dt ]i ~-~/2[dSl(m)' (16) and s~m) (T, Tt)+ s~m) (r, T~) = S. In both models the following temper- 

ature dependences were used QI0(T) = 3" 10-TT [8] and P,o(T) = A exp (--bT-Va) + GTg [7], where 
A = 2.24"104 , b = 308.5, G = 4.02.10 -Is, g = 2.474 (the dependence Pl0(T) is given for the 
temperature interval 300~ ~ T ~ 4000~ and 6VT, 6 w were given by expressions from [i]. 

The solution of the equations of NLKM was obtained for various initial distribution 
functions. Only those functions were used which assured a diffusion of the vibrational energy 
on lower levels. Calculations performed for conditions 300~ ~ T ~ 2000~ and S O ~ 2.0 
showed that the form of the initial distribution practically does not affect the character 
of the dependences S(t) and T(t). This fact is clarified by the course of the V-V transfer 
processes, which assures the reconstruction of the initial distribution and within the char- 
acteristic time Tvvbrings the gas to the state with a quasistationary distribution function. 
In the process of reconstruction the upper vibrational levels are populated (this leads to 
formation of a plateau of the function fi). Thereafter, through the upper levels the trans- 
mission of energy from the vibrational to the translational degrees of freedom takes place. 
Heating of the gas due to the nonresonant V-V transfer of molecules during the formation 
of the distribution function is negligibly small as compared to the general heating due to 
the V-T transfers. Therefore, if initially the vibrational energy is concentrated in the 
lower levels (i.e., the energy losses due to the V-T collisions are small), then indepen- 
dently of the character of its distribution during the timeTvv K ~VT (TVT is the character- 
istic time of the V-T heating of the gas) the gas should pass into a state with a quasi- 
stationary distribution function determined by the values of the parameters S ~ S O and T = 
T O �9 

In Fig. 4 we give times of a fixed energy loss ~(H) as functions of S O in the following 
conditions N O = 2.67"I0 Is cm -3, S o = 0.1-2.0 (~(H) is time in which one molecule releases on 
the average the energy H.10 -2 ~0[S - Seq(Teq)]; Seq and Teq are the values of S and T corre- 
sponding to the final equilibrium distribution). The plot shows a good agreement between 
the results obtained by the MQMR and NLKM methods (lines 1 and 2). The largest discrepancy 
of the values of ~(H) takes place in the initial stage of relaxation for 0.6 ~ S O ~ i.I, 
although it does not exceed 30%. In the course of relaxation the discrepancy of values ob- 
tained by both methods decreases. For instance, for 50 ~ H ~ 70 the discrepancy does not 
exceed 15%. In the final stage of relaxation (H = 95) the results agree within 7%. In Fig. 4 we 
also show the dependence of the total contribution of the V-V processes to the heating of 
the gas on S O . It shows that with increase of the initial nonequilibrium the contribution 
of the V-V processes to the total heating increases, but does not exceed 120~ (S O ~ 2.0). 
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To demonstrate the capabilities of MQMR in studies of the dynamics of motion of vibra- 
tionally off-equilibrium molecular gases we consider the problem of propagation of a weak 
shock wave in excited nitrogen. It is shown in [ii] that such a wave will be amplified and 
will attain the stationary regime of spontaneous explosion. The accuracy of the calculations 
will be determined by way of comparing them with the results of calculations based on NLKM. 

The wave is generated by a piston beginning at time t = 0 a uniform motion along the 
x-axis. This motion is such that in case of an equilibrium gas it would correspond to the 
velocity of the compression jump Vsh w = l.lc 0 (c o is the speed of sound in equilibrium un- 
excited gas). One assumes that in front of the shock wave the parameters of the excited gas 
N o , T 0 and S O > Seq(T 0) are constant, and the processes of dissociation and electronic ex- 
citation of molecules can be neglected. 

Within the framework of MQMR the system of equations describing the nonstationary motion 
of the gas and accounting for the energy exchange between the vibrational and translational 
degrees of freedom of the molecules, has the form 

aN a ( N v ) = 0  ' a(Nv) 0 ( p ) 
a'-T + a---Z- --Ti-- + ~Z -~- + Nv~ = O, 

(17) #e # (d___.S ~(m) 
- -  \ d r /  "~ + "~x -'~ \dr ] " 

Here v and p = kNT are the velocity and pressure of the gas; e =-~(5kT + mu~); m is the mass 

of a molecule; (dS~ (m) (dSl (rn). - "" " (dS ~%rn)o 
\ ' ~ ' 1  ~--- \ ~ ] 1  "t- \ dt 12 

In the framework of NLKM the system of gas-dynamic equations is represented by the re- 
lations 

a~ i a(N,v) at + ~z" = N ( ~ + I - - ~ 0 ,  i = 0 ,  l . . . . .  ~. ,  

a (Nv) a (_~ ) 
�9 a t  + TZ + N v  ~ = 0, (18 )  

t ,  
a,  o 

0"7" + " ~  [(e + p)  ul = - -  N E i  (giJ,-1 - -  Zi)" 
i = l  

The notation used here is the same as in (i) and (17). 

Equations (17) and (18) were solved numerically with the aid of the methods given in 
[12, 13]. The propagation of the shock wave created by the piston in the gas with the para- 
meters S o = I, T o = 300~ N o = 2.67-10 Is cm -s is characterized in Fig. 5 where a plot of 
pressure as a function of coordinate at the moments of time 750 ~sec and i.i msec is given 
(i - NLKM, 2 - MQMR). It is apparent that the results of the calculations by the MQMR method 
agree with the results according to NLKM to within 10%. The application of MQMR in the given 
case assures a good accuracy of description of the process of vibrational relaxation with 
reasonable computational effort [the ratio of the time of numerical solution of Eqs. (18) and 
(17) was about 500]. 

The authors express deep gratitude to I. A. Kossoi for his constant interest in the work 
and to A. P. Napartovich for useful discussion. 
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PHENOMENOLOGICAL MODEL OF FIRST-ORDER PHASE TRANSITIONS IN 

A DEFORMABLE ELASTIC MEDIUM 

I. G. Getts, A. M. Meirmanov, 
and N. V. Shemetov 

UDC 536.421 

We assume that the continuous medium under consideration can be described with the help 
of averaged quantities and that these quantities satisfy the laws of conservations of mass, 
momentum, and energy [i] 

09]or -;r- div (gv) = 0; (i) 

O/Ot(pv) 4- div (gv |  - -  P) = 9[; (2 )  

O~t(9(U + (l/2)[v[~)) + div (~(U + (l/2)[v12)v - -  • - - P  (v)) = p l . v  + 9g (3 )  

everywhere in the region ~ R  ~ occupied by the medium for all values of the time t in the 
interval (0, T) for any state of the continuous medium. Here 9 is the density; v the veloc- 
ity; P the symmetric stress tensor; U the specific internal energy; O the temperature; 
the thermal conductivity; f the external body force density; ~ the internal heat source 
density. Equations (I) through (3) have the form of the abstract conservation law 3A/~t + 
div (Av--~) = X, and when the functions A, v, and ~ have first-order discontinuities it is 

necessary to use the integral identity ~'JiJ (l(| + v)- ~)vdF = J~ XdG for an arbitrary volume 

G of the four-dimensional region ~T = ~ • (0, T) enclosed by a smooth surface F whose outward 
normal is v (| is a unit vector along the time axis). 
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